Lectures

Introduction to the modern software tools and programs for the
simulation of high energy physical processes

Introduction

The purpose of this lecture series is to provide the information about the modern software tools for the
simulation of physical processes that happen with particles at accelerators and colliders. Usually these
are high energy particles, from MeV (mega electronvolt, 10° eV) to TeV (teraelectronvolt, 10'* eV),
but sometimes one has to simulate also the passage of particles down to 1 eV.

The files of these lectures can be downloaded here: http://cern.ch/mkirsano/course.tar.gz. This tarball
contains in particular files for the exercises.

The lecture files can be seen here:

1. Operating systems (OS), shells, file systems

The main computer operating system (OS) in big HEP (High Energy Physics) scientific centers, such
as CERN normally is UNIX, and since ~ 2000 year it is Linux. CERN supports the type of Linux called
CentOS (CC) and, for backward compatibility, the older type Scientific Linux CERN (SLC)
(http://linux.cern.ch). They come from the Red Had Enterprise Linux versions recompiled from source.
The computers of the general purpose CC computer cluster at CERN are called Ixplus. They support
the common file system AFS. The volumes of this system are visible from all computers Ixplus, as well
as from most of the desktop computers installed at CERN. CERN Linux cluster users usually have their
home folders on AFS. It is also possible to make CERN AFS visible from distant computer clusters.

There are other possibilities to create a common file system for several computers, without installing
AFS, for example NFS. This is the case for the UTFSM cluster.

For the central storage of common software CERN uses now the CernVM file system (cvmfs). For
ordinary users it is read-only and optimized for the multiple user access to many files. The transition to
cvmfs is rather recent, it was performed early in 2019. You can still find old documentation pages that
refer to AFS SW storage, made unreadable after this transition.

For the large volume data storage at CERN the file system EOS is used.

External login to the CERN computers is allowed only through SSH (ssh , sftp, scp).

CERN supports also the system MacOS and has some corresponding computers.

A few experiments at CERN support WINDOWS as one of the OS.

Users, for small tasks or on laptops, can choose any convenient system. SSH access to the Linux
computers at CERN from WINDOWS is possible through e.g. PuTTY. It is possible to download the
corresponding programs here: http://www.chiark.greenend.org.uk/~sgtatham/putty

The computer architecture, operating system and compiler version together define the computer
platform, for example x86 64-centos7-gcc63-opt means that you have the Intel 64 bits processor with
operating system CentOS and your default compiler is gcc version 6.3.

In the internet it is possible to find the UNIX/Linux tutorial for example here:
https://www.tutorialspoint.com/unix/index.htm (or just search in Google “UNIX tutorial”).

A very important tool in the code development in UNIX is Make. The corresponding manual can be
found here: http://www.gnu.org/software/make/manual/

A user communicates with the computer operating system through the shell. Several shells exist, the

most popular are c-shell, or csh (more often its extension tcsh) and b-shell, or sh (in Scientific Linux
and other flavors of RedHat Linux, such as Fedora, sh points to bash). Experiments usually support
both shells, but one of them is used by default. Some specialists recommend to use b-shell for scripts.
Some considerations about this can be found here: http://www.grymoire.com/Unix/index.html

To know what is your default shell type echo SSHELL

Exercise 1.1

Write a shell script for the shells sh and csh that copies all files from the subdirectory above the
current to the current subdirectory. Encode the explicit loop to do this.

Exercise 1.2

Write Makefile that compiles the program myprog.cc (the executable file name myprog). Perform
the compilation in two steps: creating the object file myprog.o (compiler option —c), then linking.
Check that if you type make for the second time without changing the source file, the compiler is not
run. Add the dependency on the file myname.inc, check that if you change it, the program is
recompiled. Use the standard Make variables $@ and $<

A few words about the compilers. On the Ixplus cluster at CERN one usually does not use the native
compiler of the installed Linux system because it cannot be updated and quickly becomes obsolete. For
the CentOS Linux the compiler version is 4.8. To use instead a newer version of compiler one has to
source the script e.g. /cvmfs/sft.cern.ch/lcg/contrib/gcc/6.3/x86 64-centos7-gec63-opt/setup.csh (or .sh
for the b-shell or bash). After this redefinition of the compiler the user should choose the tools that
correspond to it. For this, one should use the platform that corresponds to the defined compiler. The
platform that corresponds to the compiler above is x86_64-centos7-gcc63-opt.

2. Cross — platform compilation tools

As one could see in the exercise to write a Makefile, the Make dows not solve completely the
problem of the build automatization. For example you have to specify the dependencies on included
files by hands. If your build system should work on different platforms, your Makefile will contain
several or even many conditionals (“if” commands). This quickly becomes a problem for complicated
SW projects. To solve this problem several cross-platform tools were created. If used on Linux or
MacOSX, almost all these tools are made as a higher-level system above Make. This means that at the
first step the tool creates a Makefile that is run at the second step by the usual commands “make” and
“make install”. Note that the automatically created Makefile is usually rather difficult to read even for
simple SW systems. Below I list two tools that historically were used and can be now encountered in
HEP.

Autotools. Historically one of the first tools of this kind, a revolutional system at the beginning. Is
can be encountered in some event generators. However, from the beginning it was oriented to ¢ and
ct++ codes. Although it can be used for Fortran codes, it does not work with the dependencies on files
included in the Fortran code files. It can be extended to such files using the so-called macros, but this
makes its usage more complicated from the beginning. Many programmers believe it too complicated
and do not recommend to use it if you prefer to be more concentrated on the code itself.

CMake. It was created later and took into account some problems that appeared in the development
of autotools. The dependencies for the Fortran code files work out of the box, so there are less
problems for the legacy event generators. I use this tool for my projects and below we will have an
introduction to it.

Several other tools exist on the market. May be somebody could have a look at them. I don’t know
about HEP projects that use them. These tools are: SCons, Premake, Ninja, Meson, FASTbuild,

Sharpmake, Maven, Ant, Gradle).

To get started with CMake there is for example the WEB page
https://cmake.org/cmake/help/latest/guide/tutorial/index.html,

which is a part of the general CMake documentation page https://cmake.org/documentation/

Below I give some hints about CMake usage that make the work with CMake projects more
convenient.

1. Use GLOB for the automatic composition of source files list:
file(GLOB sources Core ${PROJECT _SOURCE_DIR}/src/Core/*.cc)

3. Version control systems

If a SW project is developed by several programmers, it is convenient to use version control systems.
With the increase of the complexity of a project and number of developers the use of such system
quickly becomes necessary.

A version control system allows users to keep track of the changes in software development projects,
and provides a possibility to collaborate on those projects. Using it, the developers can work together
on code and separate their tasks through branches.

There can be several branches in a version control system, according to the number of collaborators.
The branches maintain individuality as the code changes remain in a specified branch(s).

Developers can combine the code changes when they are ready. Further, they can view the history of
changes and go back to previous versions.

Branch and Merge

A version control system keeps codes in the repository. The common internal feature of all such
systems is that only differences are stored, together with the information about the time and authors of
the changes and comments written by the authors.

Below is the list of most known systems

CVS is one of the oldest systems. It has been used for a long time at CERN for various projects.

SVN was developed as a successor to CVS with the idea to improve the functionality. Most of
projects moved to it after CVS, but some skipped it in favor of GIT. For me, the branch creation system
seemed strange and inconvenient in SVN. This is not only my opinion.

GIT. This system is used through GitHub or GitLab, the WEB — based GIT repositories. It is
advertised as a system with many features convenient for professional developers of complicated SW
projects. Most of these features are difficult to understand for a physicist. On the other hand, there is an
enormous drawback: you cannot work with subdirectories. Unfortunately, to save resources CERN
stopped the support of central SVN repositories soon after the transition of most of projects to GIT.

As another system I only mention Apache Subversion, others are too exotic.

The documentation can be easily found in the internet. Below I list a few main actions that a user or
developer performs when he works with version control systems (very simplified, for a physicist).

1. Checkout the code. This command copies the code from the repository to your computer in such
a way that you can use or change it and send the changes to the same repository. In GIT the
command is git clone

2. Commit the code. These actions put your changes in the repository. In GIT it is a two steps
action: git commit, then git push.

3. Update your local copy of the code by the changes committed by other developers. In GIT the
command is git pull.

4. Branch actions. Getting or creating a branch

5. Pull requests. Some repositories are organized in such a way that only a few users can commit
directly the changes. A user without such privilege, instead of commit, makes a pull request that
goes into the repository only after the approval of a more privileged developer.

4. ROOT

ROOQOT https://root.cern.ch/ is the analysis and visualisation tool. It is written in c++ and has the c++
command interpreter.

On the CERN Linux computer cluster various ROOT versions are installed in
/evmfs/sft.cern.ch/lcg/releases.

Example: /cvmfs/sft.cern.ch/lcg/releases/LCG_87/ROOT/6.08.02/x86 64-centos7-gcc62-opt/bin/root
In all installed versions of ROOT there is a folder /tutorials with a very extensive collection of usage
examples as macros (macrocommands to be executed by ROOT, files with extension .C). Often it is
simpler to choose one of the examples and modify it looking in the reference manual (classes and
methond description) than to encode your own macro from zero using the ROOT user’s manual, which
is rather large.

To install ROOT on a computer, e.g. laptop, the following steps are needed:

1. Download ROOT source tree from the WEB site specified above, the file name is

root vX.XX.XX.tar.gz, where X.XX.XX is a ROOT version. Copy this file to e.g.
/swdisk/ROOT. It is better to use a production version, not development.
2. cd to this directory and expand ROOT tarball: tar xvfz root vX.XX.XX.tar.gz
The subdirectory root will be created. Rename it to X.XX.XX: mv root X.XX.XX
It is better to rename because another version of ROOT could be needed later.
3. Change directory to ROOT. Set the environment variable ROOTSYS:
setenv ROOTSYS /swdisk/ROOT/X. XX.XX (for shells csh, tcsh) or
export ROOTSYS=/swdisk/ROOT/X.XX.XX (for shells sh, bash). This means that the
environment-driven installation method is used (the manual is /README/INSTALL.

4. Configure ROOT: configure linux —enable-roofit . The first argument is a system type, can be
used for Fedora, slc6, centos on Intel computers. The second argument will install the additional
package RooFit. The full list of possible options can be seen by typing configure —help.
make
make install
7. Create environment to work with ROOT:

setenv LD LIBRARY PATH ${ROOTSYS}/lib (csh,tcsh) or

export LD LIBRARY PATH=${ROOTSYS}/lib (sh,bash)
setenv PATH ${PATH}:${ROOTSYS}/bin (csh,tcsh) or
export PATH=${PATH}:${ROOTSYS}/bin (sh.bash)

For immediate use the command rehash could be needed
8. With this environment ROOT will run after typing from any place root. Setting ROOTSYS,

LD LIBRARY PATH, PATH (items 3,7) it is better to put into start files .cshrc (.shrc).

SN

Exercise 2.1

Write a ROOT macro (file with extention .C) that build a graph of the function f(x), where x takes
values (10, 15, 20, 30, 40, 60, 70), f takes values (200,250,300,400,500,700,780), with errors equal to
sqrt(f). Use ROOT /tutorials u reference manual.

5. Event Generators

The interactions of particles characteristic for an experiment are often simulated by special programs
called Event Generators. Such programs allow to simulate many particular, sometimes exotic or
hypothetic, often very rare processes.

Event Generators are subdivided into General Purpose and more specialized Matrix Element
generators. The former can simulate an interaction to the level of detectable particles, the latter
simulate only a primary interaction described by some matrix element. The final state particles of
Matrix Element generators can be e.g. gluons and quarks — particles that cannot be observed directly. In
order to simulate the response of detectors to such particles the special processes called hadronization
should be simulated. The result of hadronization is a number of particles that can be observed directly.
The main difficulty here is that the hadronization cannot be described in the framework of the
perturbation theory. There are no exact recipe how to perform it, only half-phenomenological models
realized in the first type generators (General Purpose). This means that Matrix element generators can
be used only together with one of the General Purpose generators.

The examples of General Purpose generators are PYTHIA, HERWIG, PYTHIAS, HERWIG7,
SHERPA. The former two are encoded in FORTRAN, the next two are their further development
realized in ct++ using the Object Oriented technologies. SHERPA is one more generator encoded in
c++ that uses some algorithms of PYTHIA and some other ideas. The hadronization in PYTHIA is
based on the model of strings breaking while in HERWIG it is based on the clusterization model. The
FORTRAN versions are now obsolete and rarely used, although they still work and can be run.

The General Purpose generators have some internal matrix element generators. In general they are
simpler to use, but have some limits, for example pythia8 cannot make simulations in NLO. The
attempt towards NLO is made in SHERPA, but because of this it is more complicated to use.

As the event generation is only the first step in the full simulation of samples, it is convenient to have
a standard data record structure and input-output format are needed. HepMC
(http://Icgapp.cern.ch/project/simu/HepMC) and its ASCII input-output are most often used as such.

6. Matrix Element Event Generators

The Matrix Element generators are much more numerous because of the absence of complicated parts
that perform hadronization. Some of them are multipurpose, others are more specialized. The most
known multipurpose generator is MadgraphS aMC@NLO. The example of more specialized generator
is POWHEG-BOX.

The most known generators repository is HepForge:
http://www.hepforge.org/projectshttp://lcgapp.cern.ch/project/simu/generator/

If you are looking for a generator with a name GENNAME as a rule it is sufficient to search in
Google “GENNAME HepForge”.

Exercise 3.1

Install HepMC (production version);

Download and compile PYTHIAS;

Modify example main78 from /examples: type the transverse momentum Pt of Z-boson in each event,
introduce the lower boundary on this value in PYTHIAS8 parameters for the simulation and check that it
works (there are no events below this value) and that the cross section decreases if you increase the
boundary;

Write the events to the output file and write a ROOT macro that draws the Pt histogram.

VYnpaxuenue 3.2

Bruttounts rucrorpaMmmupoBanue ¢ nomouisio ROOT B executable ynpaxuenus 3.1. Heooxoaumblie
header ¢aiinpl, 6MGIMOTEKH U ONIIMHM KOMIIHISATOPA MOCMOTPETh B /ex3.2. [TocTpouts ructorpammy Pt
Z-0030Ha M HApPUCOBATb €€.

6. GEANT4

This program, the so-called toolkit, i.e. a number of codes , from which a user can choose the needed
parts and create his own application, serves to simulate the passage of particles through matter,
possibly in presence of electromagnetic fields. For this, the toolkit has a possibility to simulate various
interactions of particles with matter and particle decays, except those that have very small probability.
The WEB site address is http://geant4.web.cern.ch/geant4/

To start to work with Geant4 one should choose or download some set of precompiled Geant4
libraries or download the source and build the libraries. The libraries to download can be chosen on the
Geant4 WEB site. On the CERN Ixplus cluster it is possible to use the precompiled libraries installed
on cvimfs. Below is the recipe of building the libraries. At least 2.5 GB of disk space will be needed

1. Download the source code geant4.XX.XX.tar.gz and put it to some general folder
2. Untar the archive tar xv{z geant4. XX.XX.tar.gz, this results in directory geant4. XX.XX
3. Create the folder /geant4 build and cd to it
4. Type the following command in one line:
“cmake -DCMAKE INSTALL PREFIX=../geant4 install -DGEANT4 INSTALL DATA=ON
..Jgeant4. XX. XX

5. make (or make —j4 if your computer is multicore). With relevant —j4 the compilation on modern
Intel computer takes 10 minutes

6. make install

To start learning Geant4, as usual, it is most convenient to start from the available examples. They
can be found in the subdirectory /examples in the Geant4 source tree. There are many examples there in
different folders that correspond to the learning level.

IMocmotpum Ha pumep NO2 B /novice. B mamnke src HaxoasaTcs HECKOIBKO (PaiiiIoB ¢ KOJaMH.

B ¢aiine *DetectorConstruction.cc onpeaensiercs reoMeTpHsi yCTaHOBKH.

B ¢aitne *PhysicsList.cc onpenensoTcst Hy>KHbIe 4aCcTHUIIBI U Tporiecchl. OnpeeneHne mpoueccoB ¢
YacTHUIIAMU, HE UMEIONIMMH CUJIBHOTO B3aummopeucTBus (kak mpumepbl N02, NO3) umeer 0ObIYHO
JOBOJILHO TIPOCTYIO CTPYKTYpY. Ecnu sxe HyXHO paboTaTh ¢ agpoHaMU HE OYeHb HU3KOM 3HEPTuu, TO
HY>KHO UCIIOJIb30BaTh CTaHAAPTHbIE TUCTH U3 6nbimmorek GEANT4.

B ¢aitne *SD.cc ompenenstorcs AEHCTBHUS, KOTOPbIE IOJDKHBI OCYIIECTBIISATHCS, KOTJa YacTuIa
IIOMAIa€T B YaCTH YCTAHOBKH, OIIPE/ICTICHHBIE KAK YYBCTBUTEIbHBIE JETEKTOPBHI.

VYnpaxunenue 4.1
Eciu He ycTaHOBIIEH, TO YCTaHOBUTH BcrioMorarenbHblil naker CLHEP
http://proj-clhep.web.cern.ch/proj-clhep/;
B CERN CLHEP ycranosnen Ha AFS B external (moJHbIi yTh CM. BBIIIIE).
Ckauatp quctpuOytuB GEANT4 ¢ Web site u pactaputsb ero;
B mamnke /ex4.1 moxxHo HaiTH Qaiin configure4.9.1 (moacTaBUTh MPAaBUIBHYIO BEPCHIO B HAa3BaHHE).
Ero HyxHO oTpemakTupoBaTh, noacraBus npaBuwibHble yTH kK CLHEP u GEANT4, 3arem caenaTth

source ./configure4.9.1;

Boiitu B nanky /source u 3anmyctuth make. Komnunsiius 3aHuMaeT mouTH vac;

CkonmpoBath B CBOIO pabouyro manky npumep NO2, BoiiTu B 3Ty mamky; B3aTh B ex4.l daiin
configure, orpenaktupoBath ero (npasuiasHble myTH K CLHEP 1 GEANT4), source ./configure, make;

[Tocne sToro nporpammy B batch MoxHO 3amycTuth Tak: ./bin/Linux-g++/exampleN02 runl.mac

A B MHTEpaKTHBHOI MoJe, ¢ Tpadukoi, Tak: ./bin/Linux-g++/exampleN02. BrriiTu u3 nmporpaMmsl B
MHTEPAKTHBHON MOJI€ MOKHO KOMaHJIOM exit

Vnpaxuenue 4.2

Ckauats nporpammy vrmlview, Hammpumep 3aech: http://www.km.kongsberg.com/sim
Binary sxenarenpHo ycraHoBuTh B /ust/local/bin. Ilporpamma crapas, npu 3amycke oHa OyneT
TpeboBaTh crapyro Bepcuto libstdc++. HykHO ycraHOBUTH compat Bepcuio gee (yum list | grep gcc;
yum install ...). Eciiu oHa HemocTaTouHO cTapas, To MOXHO caenats symlink, Hampumep:
/ust/lib/libstdc++-libc6.1-1.50.2 -> libstde++-3-libc6.2-2-2.10.0.s0

B Windows ¢aitnet VRML MoxxHO cMoTpeTs nporpamMmoii Deep Exploration.

3amenutsb B (aiine vis.mac DOWNFILE na VRMLIFILE B xomanzue /vis/open;

3amyctuth GEANT4 binary 6e3 mapamerpa (ipu 3ToOM UCIONb3YyeTCs (aiin vis.mac);

Oo6pazyercs ¢aiin g4 00.wrl (mpu moBTopHOM 3amycke g4 Ol.wrl u 1.1.). Er0 MOXHO CMOTpETh
mporpaMMoit vrmlview;

B uHTEpakTUBHOI MOJ€ MOKHO IOCMOTPETh KAKHE KOMaH/bl UMEIOTCS B JaHHOW MporpaMMe (OHH
UMEIOT JPEBECHYIO0 CTPYKTypy). st 3Toro HyxHo wucnonb3oBath komanay help. Help umeer
COOTBETCTBYIOIIYIO ApPEBECHYIO CTPYKTYypy. Kpome cranmaptuHeix komana GEANT4 ectb koMaH[bI,
CYIIECTBYIOIIIME TOJILKO B JaHHOM example, OHM HaxoAaTcs moA aupexropueit NO2;

Haiitu B help komanay, BKIIOYAIOUIYI0O MarHUTHOE IOJIE, U YOEIUTHCS, YTO TPACKTOPHS YaCTHUIIBI
UCKPUBIISETCS;

VYupaxuenue 4.3

OtkomnmnpoBats npumep NO3;

BriBectn B (paiia mosHOE 3HEProBBILACICHHE YACTHLBI (3JIEKTPOHA) B KaJOPUMETPE U IOCTPOUTH
rucrorpammy c¢ nomoupto ROOT. RMS 310l ruUCTOrpaMMbl MOXHO CYMTATh pa3peleHUuEM
KaJOPUMETPUYECKOTO JeTeKTopa 1o »Hepruum (Oomee TOYHO (PUTUPOBATH TUCTOrPAMMY
pacnpenenenueM ['aycca).

YOenurbcs, 4To

1. Pa3pemenue yxyamaercst Ipyu YBEIMYCHUH KOJMYECTBA MACCHBHOT'O BEIIECTBA B KAJIOPUMETPE
(sampling fluctuations).

2. PaspemieHue yiydmiaeTcs NPU YBEIMYEHMM JHEPIMH YACTHIBI HOpUMEpHO 10 3akonyl/VE
(BBILIE 3HEpruu npumepHo 1 I'B).

